3.21.87 \(\int \frac {(a+b x) (d+e x)^{3/2}}{(a^2+2 a b x+b^2 x^2)^3} \, dx\) [2087]

3.21.87.1 Optimal result
3.21.87.2 Mathematica [A] (verified)
3.21.87.3 Rubi [A] (verified)
3.21.87.4 Maple [A] (verified)
3.21.87.5 Fricas [B] (verification not implemented)
3.21.87.6 Sympy [F(-1)]
3.21.87.7 Maxima [F(-2)]
3.21.87.8 Giac [A] (verification not implemented)
3.21.87.9 Mupad [B] (verification not implemented)

3.21.87.1 Optimal result

Integrand size = 33, antiderivative size = 172 \[ \int \frac {(a+b x) (d+e x)^{3/2}}{\left (a^2+2 a b x+b^2 x^2\right )^3} \, dx=-\frac {e \sqrt {d+e x}}{8 b^2 (a+b x)^3}-\frac {e^2 \sqrt {d+e x}}{32 b^2 (b d-a e) (a+b x)^2}+\frac {3 e^3 \sqrt {d+e x}}{64 b^2 (b d-a e)^2 (a+b x)}-\frac {(d+e x)^{3/2}}{4 b (a+b x)^4}-\frac {3 e^4 \text {arctanh}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{64 b^{5/2} (b d-a e)^{5/2}} \]

output
-1/4*(e*x+d)^(3/2)/b/(b*x+a)^4-3/64*e^4*arctanh(b^(1/2)*(e*x+d)^(1/2)/(-a* 
e+b*d)^(1/2))/b^(5/2)/(-a*e+b*d)^(5/2)-1/8*e*(e*x+d)^(1/2)/b^2/(b*x+a)^3-1 
/32*e^2*(e*x+d)^(1/2)/b^2/(-a*e+b*d)/(b*x+a)^2+3/64*e^3*(e*x+d)^(1/2)/b^2/ 
(-a*e+b*d)^2/(b*x+a)
 
3.21.87.2 Mathematica [A] (verified)

Time = 0.15 (sec) , antiderivative size = 171, normalized size of antiderivative = 0.99 \[ \int \frac {(a+b x) (d+e x)^{3/2}}{\left (a^2+2 a b x+b^2 x^2\right )^3} \, dx=-\frac {\sqrt {d+e x} \left (3 a^3 e^3+a^2 b e^2 (2 d+11 e x)-a b^2 e \left (24 d^2+44 d e x+11 e^2 x^2\right )+b^3 \left (16 d^3+24 d^2 e x+2 d e^2 x^2-3 e^3 x^3\right )\right )}{64 b^2 (b d-a e)^2 (a+b x)^4}+\frac {3 e^4 \arctan \left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {-b d+a e}}\right )}{64 b^{5/2} (-b d+a e)^{5/2}} \]

input
Integrate[((a + b*x)*(d + e*x)^(3/2))/(a^2 + 2*a*b*x + b^2*x^2)^3,x]
 
output
-1/64*(Sqrt[d + e*x]*(3*a^3*e^3 + a^2*b*e^2*(2*d + 11*e*x) - a*b^2*e*(24*d 
^2 + 44*d*e*x + 11*e^2*x^2) + b^3*(16*d^3 + 24*d^2*e*x + 2*d*e^2*x^2 - 3*e 
^3*x^3)))/(b^2*(b*d - a*e)^2*(a + b*x)^4) + (3*e^4*ArcTan[(Sqrt[b]*Sqrt[d 
+ e*x])/Sqrt[-(b*d) + a*e]])/(64*b^(5/2)*(-(b*d) + a*e)^(5/2))
 
3.21.87.3 Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 186, normalized size of antiderivative = 1.08, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.242, Rules used = {1184, 27, 51, 51, 52, 52, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b x) (d+e x)^{3/2}}{\left (a^2+2 a b x+b^2 x^2\right )^3} \, dx\)

\(\Big \downarrow \) 1184

\(\displaystyle b^6 \int \frac {(d+e x)^{3/2}}{b^6 (a+b x)^5}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {(d+e x)^{3/2}}{(a+b x)^5}dx\)

\(\Big \downarrow \) 51

\(\displaystyle \frac {3 e \int \frac {\sqrt {d+e x}}{(a+b x)^4}dx}{8 b}-\frac {(d+e x)^{3/2}}{4 b (a+b x)^4}\)

\(\Big \downarrow \) 51

\(\displaystyle \frac {3 e \left (\frac {e \int \frac {1}{(a+b x)^3 \sqrt {d+e x}}dx}{6 b}-\frac {\sqrt {d+e x}}{3 b (a+b x)^3}\right )}{8 b}-\frac {(d+e x)^{3/2}}{4 b (a+b x)^4}\)

\(\Big \downarrow \) 52

\(\displaystyle \frac {3 e \left (\frac {e \left (-\frac {3 e \int \frac {1}{(a+b x)^2 \sqrt {d+e x}}dx}{4 (b d-a e)}-\frac {\sqrt {d+e x}}{2 (a+b x)^2 (b d-a e)}\right )}{6 b}-\frac {\sqrt {d+e x}}{3 b (a+b x)^3}\right )}{8 b}-\frac {(d+e x)^{3/2}}{4 b (a+b x)^4}\)

\(\Big \downarrow \) 52

\(\displaystyle \frac {3 e \left (\frac {e \left (-\frac {3 e \left (-\frac {e \int \frac {1}{(a+b x) \sqrt {d+e x}}dx}{2 (b d-a e)}-\frac {\sqrt {d+e x}}{(a+b x) (b d-a e)}\right )}{4 (b d-a e)}-\frac {\sqrt {d+e x}}{2 (a+b x)^2 (b d-a e)}\right )}{6 b}-\frac {\sqrt {d+e x}}{3 b (a+b x)^3}\right )}{8 b}-\frac {(d+e x)^{3/2}}{4 b (a+b x)^4}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {3 e \left (\frac {e \left (-\frac {3 e \left (-\frac {\int \frac {1}{a+\frac {b (d+e x)}{e}-\frac {b d}{e}}d\sqrt {d+e x}}{b d-a e}-\frac {\sqrt {d+e x}}{(a+b x) (b d-a e)}\right )}{4 (b d-a e)}-\frac {\sqrt {d+e x}}{2 (a+b x)^2 (b d-a e)}\right )}{6 b}-\frac {\sqrt {d+e x}}{3 b (a+b x)^3}\right )}{8 b}-\frac {(d+e x)^{3/2}}{4 b (a+b x)^4}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {3 e \left (\frac {e \left (-\frac {3 e \left (\frac {e \text {arctanh}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{\sqrt {b} (b d-a e)^{3/2}}-\frac {\sqrt {d+e x}}{(a+b x) (b d-a e)}\right )}{4 (b d-a e)}-\frac {\sqrt {d+e x}}{2 (a+b x)^2 (b d-a e)}\right )}{6 b}-\frac {\sqrt {d+e x}}{3 b (a+b x)^3}\right )}{8 b}-\frac {(d+e x)^{3/2}}{4 b (a+b x)^4}\)

input
Int[((a + b*x)*(d + e*x)^(3/2))/(a^2 + 2*a*b*x + b^2*x^2)^3,x]
 
output
-1/4*(d + e*x)^(3/2)/(b*(a + b*x)^4) + (3*e*(-1/3*Sqrt[d + e*x]/(b*(a + b* 
x)^3) + (e*(-1/2*Sqrt[d + e*x]/((b*d - a*e)*(a + b*x)^2) - (3*e*(-(Sqrt[d 
+ e*x]/((b*d - a*e)*(a + b*x))) + (e*ArcTanh[(Sqrt[b]*Sqrt[d + e*x])/Sqrt[ 
b*d - a*e]])/(Sqrt[b]*(b*d - a*e)^(3/2))))/(4*(b*d - a*e))))/(6*b)))/(8*b)
 

3.21.87.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 51
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + 1))), x] - Simp[d*(n/(b*(m + 1))) 
Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d, n}, x 
] && ILtQ[m, -1] && FractionQ[n] && GtQ[n, 0]
 

rule 52
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(( 
m + n + 2)/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], 
x] /; FreeQ[{a, b, c, d, n}, x] && ILtQ[m, -1] && FractionQ[n] && LtQ[n, 0]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 1184
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.)*((a_) + (b_.)*(x_ 
) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[1/c^p   Int[(d + e*x)^m*(f + g*x 
)^n*(b/2 + c*x)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n}, x] && E 
qQ[b^2 - 4*a*c, 0] && IntegerQ[p]
 
3.21.87.4 Maple [A] (verified)

Time = 0.38 (sec) , antiderivative size = 145, normalized size of antiderivative = 0.84

method result size
pseudoelliptic \(\frac {\frac {3 e^{4} \left (b x +a \right )^{4} \arctan \left (\frac {b \sqrt {e x +d}}{\sqrt {\left (a e -b d \right ) b}}\right )}{64}-\frac {3 \left (\left (-e x -2 d \right ) b +a e \right ) \left (\left (e^{2} x^{2}-\frac {8}{3} d e x -\frac {8}{3} d^{2}\right ) b^{2}+\frac {8 e a \left (\frac {7 e x}{4}+d \right ) b}{3}+e^{2} a^{2}\right ) \sqrt {\left (a e -b d \right ) b}\, \sqrt {e x +d}}{64}}{\sqrt {\left (a e -b d \right ) b}\, \left (b x +a \right )^{4} \left (a e -b d \right )^{2} b^{2}}\) \(145\)
derivativedivides \(2 e^{4} \left (\frac {\frac {3 b \left (e x +d \right )^{\frac {7}{2}}}{128 \left (e^{2} a^{2}-2 a b d e +b^{2} d^{2}\right )}+\frac {11 \left (e x +d \right )^{\frac {5}{2}}}{128 \left (a e -b d \right )}-\frac {11 \left (e x +d \right )^{\frac {3}{2}}}{128 b}-\frac {3 \left (a e -b d \right ) \sqrt {e x +d}}{128 b^{2}}}{\left (b \left (e x +d \right )+a e -b d \right )^{4}}+\frac {3 \arctan \left (\frac {b \sqrt {e x +d}}{\sqrt {\left (a e -b d \right ) b}}\right )}{128 \left (e^{2} a^{2}-2 a b d e +b^{2} d^{2}\right ) b^{2} \sqrt {\left (a e -b d \right ) b}}\right )\) \(172\)
default \(2 e^{4} \left (\frac {\frac {3 b \left (e x +d \right )^{\frac {7}{2}}}{128 \left (e^{2} a^{2}-2 a b d e +b^{2} d^{2}\right )}+\frac {11 \left (e x +d \right )^{\frac {5}{2}}}{128 \left (a e -b d \right )}-\frac {11 \left (e x +d \right )^{\frac {3}{2}}}{128 b}-\frac {3 \left (a e -b d \right ) \sqrt {e x +d}}{128 b^{2}}}{\left (b \left (e x +d \right )+a e -b d \right )^{4}}+\frac {3 \arctan \left (\frac {b \sqrt {e x +d}}{\sqrt {\left (a e -b d \right ) b}}\right )}{128 \left (e^{2} a^{2}-2 a b d e +b^{2} d^{2}\right ) b^{2} \sqrt {\left (a e -b d \right ) b}}\right )\) \(172\)

input
int((b*x+a)*(e*x+d)^(3/2)/(b^2*x^2+2*a*b*x+a^2)^3,x,method=_RETURNVERBOSE)
 
output
3/64/((a*e-b*d)*b)^(1/2)*(e^4*(b*x+a)^4*arctan(b*(e*x+d)^(1/2)/((a*e-b*d)* 
b)^(1/2))-((-e*x-2*d)*b+a*e)*((e^2*x^2-8/3*d*e*x-8/3*d^2)*b^2+8/3*e*a*(7/4 
*e*x+d)*b+e^2*a^2)*((a*e-b*d)*b)^(1/2)*(e*x+d)^(1/2))/(b*x+a)^4/(a*e-b*d)^ 
2/b^2
 
3.21.87.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 515 vs. \(2 (144) = 288\).

Time = 0.48 (sec) , antiderivative size = 1043, normalized size of antiderivative = 6.06 \[ \int \frac {(a+b x) (d+e x)^{3/2}}{\left (a^2+2 a b x+b^2 x^2\right )^3} \, dx=\left [\frac {3 \, {\left (b^{4} e^{4} x^{4} + 4 \, a b^{3} e^{4} x^{3} + 6 \, a^{2} b^{2} e^{4} x^{2} + 4 \, a^{3} b e^{4} x + a^{4} e^{4}\right )} \sqrt {b^{2} d - a b e} \log \left (\frac {b e x + 2 \, b d - a e - 2 \, \sqrt {b^{2} d - a b e} \sqrt {e x + d}}{b x + a}\right ) - 2 \, {\left (16 \, b^{5} d^{4} - 40 \, a b^{4} d^{3} e + 26 \, a^{2} b^{3} d^{2} e^{2} + a^{3} b^{2} d e^{3} - 3 \, a^{4} b e^{4} - 3 \, {\left (b^{5} d e^{3} - a b^{4} e^{4}\right )} x^{3} + {\left (2 \, b^{5} d^{2} e^{2} - 13 \, a b^{4} d e^{3} + 11 \, a^{2} b^{3} e^{4}\right )} x^{2} + {\left (24 \, b^{5} d^{3} e - 68 \, a b^{4} d^{2} e^{2} + 55 \, a^{2} b^{3} d e^{3} - 11 \, a^{3} b^{2} e^{4}\right )} x\right )} \sqrt {e x + d}}{128 \, {\left (a^{4} b^{6} d^{3} - 3 \, a^{5} b^{5} d^{2} e + 3 \, a^{6} b^{4} d e^{2} - a^{7} b^{3} e^{3} + {\left (b^{10} d^{3} - 3 \, a b^{9} d^{2} e + 3 \, a^{2} b^{8} d e^{2} - a^{3} b^{7} e^{3}\right )} x^{4} + 4 \, {\left (a b^{9} d^{3} - 3 \, a^{2} b^{8} d^{2} e + 3 \, a^{3} b^{7} d e^{2} - a^{4} b^{6} e^{3}\right )} x^{3} + 6 \, {\left (a^{2} b^{8} d^{3} - 3 \, a^{3} b^{7} d^{2} e + 3 \, a^{4} b^{6} d e^{2} - a^{5} b^{5} e^{3}\right )} x^{2} + 4 \, {\left (a^{3} b^{7} d^{3} - 3 \, a^{4} b^{6} d^{2} e + 3 \, a^{5} b^{5} d e^{2} - a^{6} b^{4} e^{3}\right )} x\right )}}, \frac {3 \, {\left (b^{4} e^{4} x^{4} + 4 \, a b^{3} e^{4} x^{3} + 6 \, a^{2} b^{2} e^{4} x^{2} + 4 \, a^{3} b e^{4} x + a^{4} e^{4}\right )} \sqrt {-b^{2} d + a b e} \arctan \left (\frac {\sqrt {-b^{2} d + a b e} \sqrt {e x + d}}{b e x + b d}\right ) - {\left (16 \, b^{5} d^{4} - 40 \, a b^{4} d^{3} e + 26 \, a^{2} b^{3} d^{2} e^{2} + a^{3} b^{2} d e^{3} - 3 \, a^{4} b e^{4} - 3 \, {\left (b^{5} d e^{3} - a b^{4} e^{4}\right )} x^{3} + {\left (2 \, b^{5} d^{2} e^{2} - 13 \, a b^{4} d e^{3} + 11 \, a^{2} b^{3} e^{4}\right )} x^{2} + {\left (24 \, b^{5} d^{3} e - 68 \, a b^{4} d^{2} e^{2} + 55 \, a^{2} b^{3} d e^{3} - 11 \, a^{3} b^{2} e^{4}\right )} x\right )} \sqrt {e x + d}}{64 \, {\left (a^{4} b^{6} d^{3} - 3 \, a^{5} b^{5} d^{2} e + 3 \, a^{6} b^{4} d e^{2} - a^{7} b^{3} e^{3} + {\left (b^{10} d^{3} - 3 \, a b^{9} d^{2} e + 3 \, a^{2} b^{8} d e^{2} - a^{3} b^{7} e^{3}\right )} x^{4} + 4 \, {\left (a b^{9} d^{3} - 3 \, a^{2} b^{8} d^{2} e + 3 \, a^{3} b^{7} d e^{2} - a^{4} b^{6} e^{3}\right )} x^{3} + 6 \, {\left (a^{2} b^{8} d^{3} - 3 \, a^{3} b^{7} d^{2} e + 3 \, a^{4} b^{6} d e^{2} - a^{5} b^{5} e^{3}\right )} x^{2} + 4 \, {\left (a^{3} b^{7} d^{3} - 3 \, a^{4} b^{6} d^{2} e + 3 \, a^{5} b^{5} d e^{2} - a^{6} b^{4} e^{3}\right )} x\right )}}\right ] \]

input
integrate((b*x+a)*(e*x+d)^(3/2)/(b^2*x^2+2*a*b*x+a^2)^3,x, algorithm="fric 
as")
 
output
[1/128*(3*(b^4*e^4*x^4 + 4*a*b^3*e^4*x^3 + 6*a^2*b^2*e^4*x^2 + 4*a^3*b*e^4 
*x + a^4*e^4)*sqrt(b^2*d - a*b*e)*log((b*e*x + 2*b*d - a*e - 2*sqrt(b^2*d 
- a*b*e)*sqrt(e*x + d))/(b*x + a)) - 2*(16*b^5*d^4 - 40*a*b^4*d^3*e + 26*a 
^2*b^3*d^2*e^2 + a^3*b^2*d*e^3 - 3*a^4*b*e^4 - 3*(b^5*d*e^3 - a*b^4*e^4)*x 
^3 + (2*b^5*d^2*e^2 - 13*a*b^4*d*e^3 + 11*a^2*b^3*e^4)*x^2 + (24*b^5*d^3*e 
 - 68*a*b^4*d^2*e^2 + 55*a^2*b^3*d*e^3 - 11*a^3*b^2*e^4)*x)*sqrt(e*x + d)) 
/(a^4*b^6*d^3 - 3*a^5*b^5*d^2*e + 3*a^6*b^4*d*e^2 - a^7*b^3*e^3 + (b^10*d^ 
3 - 3*a*b^9*d^2*e + 3*a^2*b^8*d*e^2 - a^3*b^7*e^3)*x^4 + 4*(a*b^9*d^3 - 3* 
a^2*b^8*d^2*e + 3*a^3*b^7*d*e^2 - a^4*b^6*e^3)*x^3 + 6*(a^2*b^8*d^3 - 3*a^ 
3*b^7*d^2*e + 3*a^4*b^6*d*e^2 - a^5*b^5*e^3)*x^2 + 4*(a^3*b^7*d^3 - 3*a^4* 
b^6*d^2*e + 3*a^5*b^5*d*e^2 - a^6*b^4*e^3)*x), 1/64*(3*(b^4*e^4*x^4 + 4*a* 
b^3*e^4*x^3 + 6*a^2*b^2*e^4*x^2 + 4*a^3*b*e^4*x + a^4*e^4)*sqrt(-b^2*d + a 
*b*e)*arctan(sqrt(-b^2*d + a*b*e)*sqrt(e*x + d)/(b*e*x + b*d)) - (16*b^5*d 
^4 - 40*a*b^4*d^3*e + 26*a^2*b^3*d^2*e^2 + a^3*b^2*d*e^3 - 3*a^4*b*e^4 - 3 
*(b^5*d*e^3 - a*b^4*e^4)*x^3 + (2*b^5*d^2*e^2 - 13*a*b^4*d*e^3 + 11*a^2*b^ 
3*e^4)*x^2 + (24*b^5*d^3*e - 68*a*b^4*d^2*e^2 + 55*a^2*b^3*d*e^3 - 11*a^3* 
b^2*e^4)*x)*sqrt(e*x + d))/(a^4*b^6*d^3 - 3*a^5*b^5*d^2*e + 3*a^6*b^4*d*e^ 
2 - a^7*b^3*e^3 + (b^10*d^3 - 3*a*b^9*d^2*e + 3*a^2*b^8*d*e^2 - a^3*b^7*e^ 
3)*x^4 + 4*(a*b^9*d^3 - 3*a^2*b^8*d^2*e + 3*a^3*b^7*d*e^2 - a^4*b^6*e^3)*x 
^3 + 6*(a^2*b^8*d^3 - 3*a^3*b^7*d^2*e + 3*a^4*b^6*d*e^2 - a^5*b^5*e^3)*...
 
3.21.87.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b x) (d+e x)^{3/2}}{\left (a^2+2 a b x+b^2 x^2\right )^3} \, dx=\text {Timed out} \]

input
integrate((b*x+a)*(e*x+d)**(3/2)/(b**2*x**2+2*a*b*x+a**2)**3,x)
 
output
Timed out
 
3.21.87.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {(a+b x) (d+e x)^{3/2}}{\left (a^2+2 a b x+b^2 x^2\right )^3} \, dx=\text {Exception raised: ValueError} \]

input
integrate((b*x+a)*(e*x+d)^(3/2)/(b^2*x^2+2*a*b*x+a^2)^3,x, algorithm="maxi 
ma")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(a*e-b*d>0)', see `assume?` for m 
ore detail
 
3.21.87.8 Giac [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 285, normalized size of antiderivative = 1.66 \[ \int \frac {(a+b x) (d+e x)^{3/2}}{\left (a^2+2 a b x+b^2 x^2\right )^3} \, dx=\frac {3 \, e^{4} \arctan \left (\frac {\sqrt {e x + d} b}{\sqrt {-b^{2} d + a b e}}\right )}{64 \, {\left (b^{4} d^{2} - 2 \, a b^{3} d e + a^{2} b^{2} e^{2}\right )} \sqrt {-b^{2} d + a b e}} + \frac {3 \, {\left (e x + d\right )}^{\frac {7}{2}} b^{3} e^{4} - 11 \, {\left (e x + d\right )}^{\frac {5}{2}} b^{3} d e^{4} - 11 \, {\left (e x + d\right )}^{\frac {3}{2}} b^{3} d^{2} e^{4} + 3 \, \sqrt {e x + d} b^{3} d^{3} e^{4} + 11 \, {\left (e x + d\right )}^{\frac {5}{2}} a b^{2} e^{5} + 22 \, {\left (e x + d\right )}^{\frac {3}{2}} a b^{2} d e^{5} - 9 \, \sqrt {e x + d} a b^{2} d^{2} e^{5} - 11 \, {\left (e x + d\right )}^{\frac {3}{2}} a^{2} b e^{6} + 9 \, \sqrt {e x + d} a^{2} b d e^{6} - 3 \, \sqrt {e x + d} a^{3} e^{7}}{64 \, {\left (b^{4} d^{2} - 2 \, a b^{3} d e + a^{2} b^{2} e^{2}\right )} {\left ({\left (e x + d\right )} b - b d + a e\right )}^{4}} \]

input
integrate((b*x+a)*(e*x+d)^(3/2)/(b^2*x^2+2*a*b*x+a^2)^3,x, algorithm="giac 
")
 
output
3/64*e^4*arctan(sqrt(e*x + d)*b/sqrt(-b^2*d + a*b*e))/((b^4*d^2 - 2*a*b^3* 
d*e + a^2*b^2*e^2)*sqrt(-b^2*d + a*b*e)) + 1/64*(3*(e*x + d)^(7/2)*b^3*e^4 
 - 11*(e*x + d)^(5/2)*b^3*d*e^4 - 11*(e*x + d)^(3/2)*b^3*d^2*e^4 + 3*sqrt( 
e*x + d)*b^3*d^3*e^4 + 11*(e*x + d)^(5/2)*a*b^2*e^5 + 22*(e*x + d)^(3/2)*a 
*b^2*d*e^5 - 9*sqrt(e*x + d)*a*b^2*d^2*e^5 - 11*(e*x + d)^(3/2)*a^2*b*e^6 
+ 9*sqrt(e*x + d)*a^2*b*d*e^6 - 3*sqrt(e*x + d)*a^3*e^7)/((b^4*d^2 - 2*a*b 
^3*d*e + a^2*b^2*e^2)*((e*x + d)*b - b*d + a*e)^4)
 
3.21.87.9 Mupad [B] (verification not implemented)

Time = 10.98 (sec) , antiderivative size = 296, normalized size of antiderivative = 1.72 \[ \int \frac {(a+b x) (d+e x)^{3/2}}{\left (a^2+2 a b x+b^2 x^2\right )^3} \, dx=\frac {3\,e^4\,\mathrm {atan}\left (\frac {\sqrt {b}\,\sqrt {d+e\,x}}{\sqrt {a\,e-b\,d}}\right )}{64\,b^{5/2}\,{\left (a\,e-b\,d\right )}^{5/2}}-\frac {\frac {11\,e^4\,{\left (d+e\,x\right )}^{3/2}}{64\,b}-\frac {11\,e^4\,{\left (d+e\,x\right )}^{5/2}}{64\,\left (a\,e-b\,d\right )}+\frac {3\,e^4\,\left (a\,e-b\,d\right )\,\sqrt {d+e\,x}}{64\,b^2}-\frac {3\,b\,e^4\,{\left (d+e\,x\right )}^{7/2}}{64\,{\left (a\,e-b\,d\right )}^2}}{b^4\,{\left (d+e\,x\right )}^4-\left (4\,b^4\,d-4\,a\,b^3\,e\right )\,{\left (d+e\,x\right )}^3-\left (d+e\,x\right )\,\left (-4\,a^3\,b\,e^3+12\,a^2\,b^2\,d\,e^2-12\,a\,b^3\,d^2\,e+4\,b^4\,d^3\right )+a^4\,e^4+b^4\,d^4+{\left (d+e\,x\right )}^2\,\left (6\,a^2\,b^2\,e^2-12\,a\,b^3\,d\,e+6\,b^4\,d^2\right )+6\,a^2\,b^2\,d^2\,e^2-4\,a\,b^3\,d^3\,e-4\,a^3\,b\,d\,e^3} \]

input
int(((a + b*x)*(d + e*x)^(3/2))/(a^2 + b^2*x^2 + 2*a*b*x)^3,x)
 
output
(3*e^4*atan((b^(1/2)*(d + e*x)^(1/2))/(a*e - b*d)^(1/2)))/(64*b^(5/2)*(a*e 
 - b*d)^(5/2)) - ((11*e^4*(d + e*x)^(3/2))/(64*b) - (11*e^4*(d + e*x)^(5/2 
))/(64*(a*e - b*d)) + (3*e^4*(a*e - b*d)*(d + e*x)^(1/2))/(64*b^2) - (3*b* 
e^4*(d + e*x)^(7/2))/(64*(a*e - b*d)^2))/(b^4*(d + e*x)^4 - (4*b^4*d - 4*a 
*b^3*e)*(d + e*x)^3 - (d + e*x)*(4*b^4*d^3 - 4*a^3*b*e^3 + 12*a^2*b^2*d*e^ 
2 - 12*a*b^3*d^2*e) + a^4*e^4 + b^4*d^4 + (d + e*x)^2*(6*b^4*d^2 + 6*a^2*b 
^2*e^2 - 12*a*b^3*d*e) + 6*a^2*b^2*d^2*e^2 - 4*a*b^3*d^3*e - 4*a^3*b*d*e^3 
)